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Abstract. The Pauli master equation for the incoherent exciton motion in onedimensional 
crystals with a single trap is solved analytically. Exact results for h e  pmbability propagator 
and he total probability are addressed with the help of an analytic solution of the Voltem 
type integral equation. To demonsvale the effezt of the Imp for the exciton motion clearly. a 
numerical calculation has k e n  made. 

1. Introduction 

In recent years much attention has been paid to the set of problems deeply connected with 
the coherence and incoherence effects for the exciton eansfer in molecular aggregates. 
Considerable progress in understanding these problems has been achieved by Silbey [I], 
Kenkre [Zl and Reineker [3]. On the other hand, to get the explicit and analytic solution of 
the probability propagator for the exciton motion, some simple models have been favoured. 
Of special interest is the onedimensional trapping model corresponding to the sensitized 
luminescence experiments described by the Pauli master equation for the probability Pn(t) 
to find the exciton at site n 

where F is the intermolecular rate constant and c is the trapping rate of the trap at site 
n = 0. This model was first investigated by Skala and Bilek several years ago [4]. However, 
as we indicated more recently [5 ]  and as we will show in the following, the centre results 
for the probability propagator and the total probability they obtained are incorrect, which 
definitely affects the correctness of their numerical calculation. Therefore, it is necessary 
to study this problem further. 

In the present paper, we address the analytic solution of this problem for the incoherent 
exciton motion with the help of an explicit solution of the Voltem type integral equation. 
The exact results for the probability propagator and the total probability of finding the exciton 
in the one-dimensional system are. presented, which provide the possibility of making the 
numerical analysis for any value of the reduced trap c/F.  Finally, we illustrate the effect 
of the trap for the exciton motion numerically. 
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2. Probability propagator 

In solving (I), we first perform the Fourier transform 

60) = Ce-"'P,(t) 
n 

where P,(t) is given by the inverse Fourier transform 

The amplitude propagator h(t) in k space satisfies the following integral equation: 

For simplicity, we consider the situation of the exciton being located at site 0 at the initial 
time, i.e., P,(O) = 6.0. This makes fk (0 )  become 1. Thus, substituting (4) into (3). and by 
using the identity [6] 

where I, is the modified Bessel function, we get the following integral equation for the 
probability propagator P,,(t) in real space 

The self-propagator P&), i.e., the probability propagator of the initially excited site, satisfies 
the well known Volterra integral equation of the second kind [7] 

This equation can be solved analytically by performing the Laplace transform 

where L[ ] is the Laplace operator. By using the table of Laplace transforms [SI, we have 
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with 

where 

Employing the convolution (Faltung) theorem and the table of Laplace transforms [8] 
to (1 1H13) yields 

Pol(t) = e-ZF‘fo(2Ft) (15) 

This gives the solution for the self-propagator 

Substituting (18) into (6). to get the explicit expression for the probability propagator is 
straightforwad 

Another equivalent expression for the self-propagator can be derived directly from (18) 
by completing the integral. The result is 

Comparing this result with equation (20) of [4] one will find that Skala and Bilek’s result 
missed the last term of (19). 
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3. Total probability 

The total probability of finding the exciton in the crystal under the influence of the trap can 
be obtained by summing both sides of (6): 
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Using the identity (61 

equation (U)) reads 

one finds that 

where T = 2Fr. a = c/ZF. This result is completely different from that of [4] (see 
equations (24) and (25) in [4]). In fact, it is easy to show that Skala and Bilek's result for 
the total probability is unacceptable in physics. To see this point, we consider the long time 
behaviour for the total probability. By taking the limit t + 00 in (24) and (25) of [41, we 
find that the total probability becomes infinity since (24) and (25) of [4] contain the factor 
te-'[lo(f) + 1l(r)] which will be large enough with increasing time to infinity. Obviously, 
such a result is unreasonable. 

4. Discussion and summary 

In contrast to equation (IO) of [4]. our expressions for the propagator P,(t) presented by (6) 
and (18) (or (19)) and the total probability E, Pa (I) presented by (24) provide the possibility 
of carrying out the numerical analysis for any value of the reduced trap c/F.  To demonstrate 
the effect of the trap for the exciton motion clearly, based on the expressions (6), (18) and 
(24) we calculated the propagators P, (t) (n = 0, 1,2) as functions of the dimensionless time 
2 F t  for different values of the reduced trap c/2F and the total probability En P,,(r) as a 
function of the reduced trap c/2F for different instants which were presented in figures 1-3. 
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Figure 1. The propagators (U)  Pdr) ,  (b) Pl( r )  and (c) Pdr)  plotted as functions of the 
dimensionless time 2Fi for different values of the reduced trap c/2F. The dotted W 2 F  = 0.5) 
and full (c/2F = 1) curves show lhe effect of the nap in comparison wilh the w e  of the perfect 
lanice (c/2F = 0, broken curve). 

In figures 1 and 2, the effect of the trap for the exciton motion has been exhibited through 
a plot of the propagator P,(t) versus the dimensionless time 2Ft  for different values of 
the reduced trap c / Z F .  From these curves it can be clearly seen that the probabilities of 
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2Ft 

2Ft 

Figure 2. The propagator P.(r) plotted as a function of the dimensionless time 2Fl For different 
values of the reduced trap cJ2F. The curves show the cases cJ2P = 0 (0). 0.5 (b). and 1 (c) 
for n = 0 (broken curve), I (dotted curve). and 2 (full w e ) ,  respectively. 

finding the exciton at sites n = 0, 1, and 2 with the trap ( c / W  # 0) are lower than the 
case without the trap (c/2F = 0). This means that the presence of the trap annihilates the 
excitons, which can also be seen from the fact that the total probability of finding theexciton 
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Figure 3. The total probability zm P,,W plotted as a function of the reduced tsap c/2F for 
different instants. The full curve shows the case ZFI = 1 while the dotted and broken curyes 
show the wes 2Fl=  10 and 2FI = 100 respectively. 

in the crystal drops rapidly with increasing the reduced nap c/2F as shown in figure 3. 
In figure 3, another evident property is shown definitely that the total probability to 

find the exciton in the crystal. which represents the total number of excitons. tends towards 
vanishing with increasing time as long as the trap is present. In the limit case of f  + m. it 
w1 be proved by (24) svaightfonuardly that the total probability will reach its limit value 
En P,(r + CO) = 0, as expected. 

Comparing our figures 1 and 2 with figure 1 of [4], one can find that the propagators 
P,,(t) (n = I ,  2) have obvious maxima in different instants and P.(t) show sensible variation 
with the dimensionless time ~ F I ,  while these features are obscure in figure 1 of [4]. 

In summary, we have solved analytically the Pauli master equation for the incoherent 
exciton motion in one-dimensional crystals with one trap. The exact and explicit solutions 
for the probability propagator and the total probability have been obtained with the help 
of an analytic solution of the Volterra type integral equation. from which the effect of the 
trap can be seen clearly. Our analytic results in this paper will provide the basis for further 
investigation on the theory of the exciton transport since such topics arise in a number of 
contexts. 
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